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Assembly of ()-Cylindrocyclophanes A and F via called for disconnection of macrocyckat C(4-5) and C(17
Remarkable Olefin Metathesis Dimerizations 18); incorporation of the requisite terminal olefins revealed diene
Amos B. Smith, Ill,* Sergey A. Kozmin, 3 (Scheme 1). Assembly @ would again rely on Danheiser
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A fascinating array of architecturally complex natural products
arise via dimerizatioA. The vast majority of these structures
involve assembly via carberheteroatom linkages (e.g., ester,

Scheme 1

Cylindrocyclophanes (1)
1a) R=OH

amide, etc.), giving rise to macrocyclic lactones and lactams often (16) R=H
possessin@,-symmetry. Dimerization via carbetcarbon bond SiR, A
formation, a relatively rare event, not surprisingly furnishes /\/\/ . —
particularly attractive synthetic targets. The cylindrocyclophanes \/ <>

A—F represent such a cas@hese unique naturally occurring o

22-membered carbocyclic [7,7]-paracyclophahésoplated by 5 4
Moore and co-workers fror@ylindrospermum licheniforni are
postulated to arise biosynthetically via dimerization involving
electrophilic aromatic substitution at C(2) of a 5-substituted annulatiorf in this case involving cyclobutenongand siloxy
resorcinol with an olefin appropriately positioned in the side acetylenes, the latter prepared in our first-generation synthesis.
chain?e We envisioned this approach to hold considerable promise for
significant improvement in overall efficiency.

Our point of departure for cylindrocyclophane Hoj involved
conversion of known alcohol{)-67 to iodide @)-78 (Scheme
2). Treatment of this iodide with-BuLi in ether at—78 °C,

Scheme 2
HO\)\/\ L, PPh,, imid. '\/k/\ tBuLi, ether;
N Tl —_—
A: R=R,=0OH (1a) D: R,=R,=0Ac Proposed Biogenetic (82%) &
B: R;=OH, R,=OAc  E: R;=OAc, R,=H Precursor (+)-6 (+)-7 (67%)
C: R,=OH, R,=H F: R,=R,=H (1b) g
From the retrosynthetic perspective, exploitation of the above /\/\/OT'F’S
biomimetic strategy, while appealing, appeared difficult due to ; ~ )9
both regio- and stereochemical issues associated with bond N a) Xy toluene, 80 °C
formation at C(7) and C(20). We therefore explored an alternate e
tactic involving olefin metathesigo close the [7,7]-paracyclo- b) TBAF, THF
phane skeletoh This approach led to cylindrocyclophanelb), o (69%) Vel K,co, (110, Ak
the first member of the family to succumb to total synthesis. (+)-8 80 °C ':
Encouraged by the high efficiency of the ring-closing metathesis (91%) ()11, R=Me

(RCM) process, we recently explored the feasibility of assembling

the C,-symmetric cyclophane skeletons for both cylindrocyclo- followed by addition of the resultant organolithium to ethoxy

phanes A and F via olefin metathesis dimerization, a tactic not cyclobutenoné, furnished cyclobutenoneH)-8% in 62% yield.

previously exploited in natural product total synthesihe plan Danheiser annulati6rwas then achieved by heating a solution
- — - of (+)-8% and siloxy acetylene~)-9° for 2 h at 80°C. Treatment

e e o e Tt Lot 525,48 “"of the reaction mixture with TBAF, followed after chromaog:
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the Myers amide {)-15'* added to furnish, as anticipated, a
ketone which was reduced with-}-B-chlorodiisopinocamphey-
Iborane (dr= 19:1)? to give alcohol ¢)-16.8 Protection of the
benzylic hydroxyl (TESOTT, 2,6-lutidine) completed construction
of diene @)-17 (Scheme 33.

Scheme 3
1.
) =
nB u3 ;
- 09 3. Mel, CO;3
toluene, 80 °C (89%)
o 2.1,, CH,Cl,
12 3. TBAF, THF
(68%, 3 Steps)
1. t-Buli, THF;
0

oH £ s

2. (+)-DIPCI, THF

(55%, 2 Steps) TESOT

2,6-Lutidine
(92%)

(+)-16, R=H

L.

With both (—)-11and (+)-17in hand, we turned to the required
dimerizations. Treatment of diene-J-11 with Grubbs catalyst
A32(15 mol %; Table 1) for 25 h at ambient temperature led to
paracyclophane~)-18°in 55% yield. Interestingly, only thE,E
isomer was observed. With 20 mol % of catalyst and a longer
reaction time (72 h; entry 2)«)-18 was produced in 61% yield.
The perhydroimidazolidine catalysB), recently introduced by
Grubbs!® also promoted the dimerization with similar efficiency
at 40°C for 4 h inbenzene. The Schrock cataly&)* proved
most reactive, furnishing=)-18.in 72% in 2 h at 20°C. Even
higher efficiency (77% yield, entry 6) was obtained when the
latter conditions were applied to diene-)17, required for
cylindrocyclophane AXa). It is noteworthy that the alternative
“head-to-head” dimerization products were not detected in these
experiments, presumably indicative of the reversible nature of

(+)-17, R=TES

Table 1

RCM catalyst
solvent
Entry Substrate Catalyst Solvent Rxn Time, Product?
(mol%) Temp. (% yield)
1 (-)-11 A(15%) CH,Cl, 25h,20°C (-)-18 (55)
2 (-)-11 A(20%) CH,Cl, 72 h, 20 °C (-)-18 (61)
3 (-)-11 B(15%) CH,Cl, 4h,40°C (-)-18 (48)
4 (-)-11 B(15%) Cohs 27 h,40°C (-)-18 (58)
5 (-)-11 C(30%) CeHy 2h,20°C (-)-18 (72)
6 (+)17 C(34%) Cehs 1h,20°C (+)-19(77)
2 Refers to isolated yield after chromatographic purification. Ph
Nl N\ )g i-Pr.
Ms- ~Ms |
P
C,"Rlucﬁ’ Ph CI,,J:_ (CF3)2MeCO—Mox
av i v Ph (CF3)2MecO’ )
PCys A PCys B ®Proc

(11) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.;
Gleason, J. LJ. Am. Chem. S0d.997 119 6496.
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Chem., Int. Ed. Engl1995 34, 2039. (b) Scholl, M.; Ding, S.; Lee, C. W.;
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the metathesis reaction and the low-energy nature ciltiteans
“head-to-tail” dimer*

Heterogeneous hydrogenation of diene)-8 (Scheme 4),
followed by cleavage of the methyl ethers with BBthen

Scheme 4

OMe
1.H,, Pd/C

2. BBry, CH,Ch
(84%, 2 steps)

(-)-18 (-)-Cylindrocyclophane F (1b)

completed the synthesis of {-cylindrocyclophane Flb), which

was identical in all respects [500-MH#H and 125-MHz3C
NMR, HRMS, optical rotation, and TLC (three solvent systems)]
with an authentic samplé As anticipated, the second-generation
synthesis of {-)-cylindrocyclophane Flp) proved more efficient
(11 steps; 22% overall yield) compared to our first synthesis (20
steps; 8.3% overall yield), which employed a stepwise construc-
tion of the cyclophane skeletdn.

Completion of ()-cylindrocyclophane A 1a) was next
achieved via desilylation (TBAF, THF) of{)-19, hydrogenation
(Adams’ catalyst), and cleavage of methyl ethers (PhSi€dx,
NMP, 215°C) (Scheme 5)° The synthesis required 16 steps and

Scheme 5
TESQ,, RN
OMe
1. TBAF, THF
MeO 2. Hy, P10,
e Totes b5 6 =00

(60%, 3 steps)

(-)-Cylindrocyclophane A (1a)

(+)19

proceeded in 8.1% overall yield(—)-Cylindrocyclophane A1a)
was identical in all respects with the literature spectral data [500-
MHz 'H and 125-MHz 3C NMR, HRMS] and chiroptic
propertieg>1?

In summary, dimerization via the ring-closing metathesis
provides a remarkably efficient tactic for assembly of the
cylindrocyclophane [7,7]-paracyclophane skeleton.
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